792x^2+97=180

Simple and best practice solution for 792x^2+97=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 792x^2+97=180 equation:



792x^2+97=180
We move all terms to the left:
792x^2+97-(180)=0
We add all the numbers together, and all the variables
792x^2-83=0
a = 792; b = 0; c = -83;
Δ = b2-4ac
Δ = 02-4·792·(-83)
Δ = 262944
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{262944}=\sqrt{144*1826}=\sqrt{144}*\sqrt{1826}=12\sqrt{1826}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{1826}}{2*792}=\frac{0-12\sqrt{1826}}{1584} =-\frac{12\sqrt{1826}}{1584} =-\frac{\sqrt{1826}}{132} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{1826}}{2*792}=\frac{0+12\sqrt{1826}}{1584} =\frac{12\sqrt{1826}}{1584} =\frac{\sqrt{1826}}{132} $

See similar equations:

| 3f+9ff=4 | | -799x^2-297=-218 | | -x^2+361=0 | | 7x+8=5x0 | | 15x+9=8x+44 | | 10x-9=3x-44 | | 2=1.015^4x | | 2(3-h)-6=(-5h) | | 2(4x-3)=3x-11 | | 18x-3=9x-30 | | 13x-8=4x-80 | | 3(x+5)-7=23 | | 5x+30=2×+24 | | 2x^2=3.5 | | 18x-4=10x+76 | | 14x+9=8x-27 | | 18x+7=9x-74 | | 5a-2=-9a+8 | | 12x+8=4x+72 | | 9x-6=3x-48 | | 15x+3=7x+27 | | (5,1);m=4 | | 3x+4/2=10 | | 40(x+3)=60(x-3) | | 3x^2+7=8 | | 2(x-3)+4x=-3(x-4) | | 2(3x+2)=3 | | 3x-1=5x=10 | | 9(-x+9)=36 | | (18x+2)+(17x+8)=180 | | X+-1/7x=48 | | 3y+7=5y-6 |

Equations solver categories